Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1866(3): 184267, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159877

RESUMO

NK-2 is an antimicrobial peptide derived from helices 3 and 4 of the pore-forming protein of natural killer cells, NK-lysin. It has potent activities against Gram-negative and Gram-positive bacteria, fungi and protozoan parasites without being toxic to healthy human cells. In biophysical assays its membrane activities were found to require phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), lipids which dominate the composition of bacterial membranes. Here the structure and activities of NK-2 in binary mixtures of different PE/PG composition were investigated. CD spectroscopy reveals that a threshold concentration of 50 % PG is needed for efficient membrane association of NK-2 concomitant with a random coil - helix transition. Association with PE occurs but is qualitatively different when compared to PG membranes. Oriented solid-state NMR spectroscopy of NK-2 specifically labelled with 15N indicates that the NK-2 helices are oriented parallel to the PG bilayer surface. Upon reduction of the PG content to 20 mol% interactions are weaker and/or an in average more tilted orientation is observed. Fluorescence spectroscopy of differently labelled lipids is in agreement of an interfacial localisation of both helices where the C-terminal end is in a less hydrophobic environment. By inserting into the membrane interface and interacting differently with PE and PG the peptides probably induce high curvature strain which result in membrane openings and rupture.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Bicamadas Lipídicas , Fosfatidiletanolaminas , Proteolipídeos , Humanos , Bicamadas Lipídicas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Peptídeos/química
2.
Biosci Rep ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163620

RESUMO

Nowadays, not only biologists, but also researchers from other disciplines such as chemistry, pharmacy, material sciences, or physics are working with antimicrobial peptides. This review is written for researchers and students working in or interested in the field of antimicrobial peptides - and especially those who do not have a profound biological background. To lay the ground for a thorough discussion on how AMPs act on cells, the architectures of mammalian and bacterial cell envelopes are described in detail because they are important targets of AMPs and provide the basis for their selectivity. The modes of action of α-helical AMPs (αAMPs) are not limited to different models of membrane permeabilization, but also include the disruption of intracellular processes, as well as the formation of fibrillary structures and their potential implications for antimicrobial activity. As biofilm-related infections are very difficult to treat with conventional antibiotics, they pose a major problem in the clinic. Therefore, this review also discusses the biological background of biofilm infections and the mode of actions of αAMPs against biofilms. The last chapter focusses on the design of αAMPs by providing an overview of historic milestones in αAMP design. It describes how modern αAMP design is aiming to produce peptides suitable to be applied in the clinic. Hence, the article concludes with a section on translational research discussing the prospects of αAMPs and remaining challenges on their way into the clinic.

3.
Angew Chem Int Ed Engl ; 62(28): e202301969, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37066813

RESUMO

While most nanoproteomics approaches for the analysis of low-input samples are based on bottom-up proteomics workflows, top-down approaches enabling proteoform characterization are still underrepresented. Using mammalian cell proteomes, we established a facile one-pot sample preparation protocol based on protein aggregation on magnetic beads and intact proteoform elution using 40 % formic acid. Performed on a digital microfluidics device, the workflow enabled sensitive analyses of single Caenorhabditis elegans nematodes, thereby increasing the number of proteoform identifications compared to in-tube sample preparation by 46 %. Label-free quantification of single nematodes grown under different conditions allowed to identify changes in the abundance of proteoforms not distinguishable by bottom-up proteomics. The presented workflow will facilitate proteoform-directed analysis on samples of limited availability.


Assuntos
Caenorhabditis elegans , Microfluídica , Animais , Caenorhabditis elegans/metabolismo , Proteoma/análise , Proteômica/métodos , Fenômenos Magnéticos , Mamíferos/metabolismo
4.
J Proteome Res ; 21(9): 2185-2196, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35972260

RESUMO

Bottom-up proteomics (BUP)-based N-terminomics techniques have become standard to identify protein N-termini. While these methods rely on the identification of N-terminal peptides only, top-down proteomics (TDP) comes with the promise to provide additional information about post-translational modifications and the respective C-termini. To evaluate the potential of TDP for terminomics, two established TDP workflows were employed for the proteome analysis of the nematode Caenorhabditis elegans. The N-termini of the identified proteoforms were validated using a BUP-based N-terminomics approach. The TDP workflows used here identified 1658 proteoforms, the N-termini of which were verified by BUP in 25% of entities only. Caveats in both the BUP- and TDP-based workflows were shown to contribute to this low overlap. In BUP, the use of trypsin prohibits the detection of arginine-rich or arginine-deficient N-termini, while in TDP, the formation of artificially generated termini was observed in particular in a workflow encompassing sample treatment with high acid concentrations. Furthermore, we demonstrate the applicability of reductive dimethylation in TDP to confirm biological N-termini. Overall, our study shows not only the potential but also current limitations of TDP for terminomics studies and also presents suggestions for future developments, for example, for data quality control, allowing improvement of the detection of protein termini by TDP.


Assuntos
Proteoma , Proteômica , Arginina , Proteínas de Ligação a DNA , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica/métodos , Fluxo de Trabalho
5.
J Proteome Res ; 21(8): 1986-1996, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771142

RESUMO

Miniaturization of sample preparation, including omissible manual sample handling steps, is key for reproducible nanoproteomics, as material is often restricted to only hundreds of cells or single model organisms. Here, we demonstrate a highly sensitive digital microfluidics (DMF)-based sample preparation workflow making use of single-pot solid-phase enhanced sample preparation (SP3) in combination with high-field asymmetric-waveform ion mobility spectrometry (FAIMS), and fast and sensitive ion trap detection on an Orbitrap tribrid MS system. Compared to a manual in-tube SP3-supported sample preparation, the numbers of identified peptides and proteins were markedly increased, while lower standard deviations between replicates were observed. We repeatedly identified up to 5000 proteins from single nematodes. Moreover, label-free quantification of protein changes in single Caenorhabditis elegans treated with a heat stimulus yielded 45 differentially abundant proteins when compared to the untreated control, highlighting the potential of this technology for low-input proteomics studies. LC-MS data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD033143.


Assuntos
Caenorhabditis elegans , Proteoma , Animais , Espectrometria de Mobilidade Iônica/métodos , Microfluídica , Proteoma/análise , Proteômica/métodos
6.
Biochemistry ; 60(42): 3187-3199, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34613690

RESUMO

α-Helical antimicrobial peptides (αAMPs) are among the potential candidates for new anti-infectives to tackle the global crisis in antibiotic resistance, but they suffer from low bioavailability due to high susceptibility to enzymatic degradation. Here, we describe a strategy to increase the resistance of αAMPs against proteases. Fusing the 12-residue αAMP KR-12 with a Trp-cage domain induces an α-helical structure in the otherwise unfolded KR-12 moiety in solution. The resulting antimicrobial Trp-cage exhibits higher proteolytic resistance due to its stable fold as evidenced by correlating sequence-resolved digest data with structural analyses. In addition, the antimicrobial Trp-cage displays increased activity against bacteria in the presence of physiologically relevant concentrations of NaCl, while the hemolytic activity remains negligible. In contrast to previous strategies, the presented approach is not reliant on artificial amino acids and is therefore applicable to biosynthetic procedures. Our study aims to improve the pharmacokinetics of αAMPs to facilitate their use as therapeutics.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/efeitos dos fármacos , Quimotripsina/química , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Proteólise , Tripsina/química
7.
Environ Microbiol ; 23(11): 6721-6733, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34414649

RESUMO

Research on the Caenorhabditis elegans microbiota only recently started, with little known about how C. elegans acquires its microbiota. Slugs live in the same habitat as C. elegans and are known vectors for the worm. Hence, we wondered how the passage through a slug affects the C. elegans gut microbiota and whether worms can acquire bacteria from the slug. Using fluorescently labelled microbiota and 16S rRNA gene amplicon sequencing, we evaluated microbiota persistence and acquisition in C. elegans after slug passage. We compared C. elegans gut microbiomes isolated from wild-caught slugs to the microbiomes of worms after experimental slug passage to compare similarities and differences in microbiome composition. We found that microbiota persists in C. elegans while passing the slug gut and that worms simultaneously acquire additional bacteria species from the slug. Although the amplicon sequencing variant (ASV) richness of worms from the experiment did not exceed the richness of worms that naturally occur in slugs, we found a high number of shared ASVs indicating the importance of commonly associated microbiota. We demonstrate that C. elegans can take advantage of its passage through the slug by acquiring new potential microbiota without losing its native microbiota.


Assuntos
Microbioma Gastrointestinal , Gastrópodes , Microbiota , Animais , Caenorhabditis elegans/microbiologia , Gastrópodes/genética , Microbiota/genética , RNA Ribossômico 16S/genética
8.
mBio ; 12(1)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593980

RESUMO

Ingestion and killing of bacteria by phagocytic cells protect the human body against infections. While many mechanisms have been proposed to account for bacterial killing in phagosomes, their relative importance, redundancy, and specificity remain unclear. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte and quantified the requirement of 11 individual gene products, including nine putative effectors, for the killing of bacteria. This analysis revealed that radically different mechanisms are required to kill Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis AlyL, a lysozyme-like protein equipped with a distinct bacteriolytic region, plays a specific role in the intracellular killing of K. pneumoniae, with assistance from BpiC and Aoah, two lipopolysaccharide (LPS)-binding proteins. Rapid killing of E. coli and P. aeruginosa requires the presence of BpiC and of the NoxA NADPH oxidase. No single effector tested is essential for rapid killing of S. aureus or B. subtilis Overall, our observations reveal an unsuspected degree of specificity in the elimination of bacteria in phagosomes.IMPORTANCE Phagocytic cells ingest and kill bacteria, a process essential for the defense of the human body against infections. Many potential killing mechanisms have been identified in phagocytic cells, including free radicals, toxic ions, enzymes, and permeabilizing peptides. Yet fundamental questions remain unanswered: what is the relative importance of these mechanisms, how redundant are they, and are different mechanisms used to kill different species of bacteria? We addressed these questions using Dictyostelium discoideum, a model phagocytic cell amenable to genetic manipulations and quantitative analysis. Our results reveal that vastly different mechanisms are required to kill different species of bacteria. This very high degree of specificity was unexpected and indicates that a lot remains to be discovered about how phagocytic cells eliminate bacteria.


Assuntos
Bactérias/imunologia , Dictyostelium/genética , Dictyostelium/microbiologia , Fagócitos/microbiologia , Bactérias/classificação , Dictyostelium/imunologia , Klebsiella pneumoniae/imunologia , Fagócitos/imunologia , Fagocitose , Fagossomos , Pseudomonas aeruginosa/imunologia , Staphylococcus aureus/imunologia
9.
Front Cell Infect Microbiol ; 11: 775634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976859

RESUMO

In comparison with the standard monoxenic maintenance in the laboratory, rearing the nematode Caenorhabditis elegans on its natural microbiota improves its fitness and immunity against pathogens. Although C. elegans is known to exhibit choice behavior and pathogen avoidance behavior, little is known about whether C. elegans actively chooses its (beneficial) microbiota and whether the microbiota influences worm behavior. We examined eleven natural C. elegans isolates in a multiple-choice experiment for their choice behavior toward four natural microbiota bacteria and found that microbiota choice varied among C. elegans isolates. The natural C. elegans isolate MY2079 changed its choice behavior toward microbiota isolate Ochrobactrum vermis MYb71 in both multiple-choice and binary-choice experiments, in particular on proliferating bacteria: O. vermis MYb71 was chosen less than other microbiota bacteria or OP50, but only after preconditioning with MYb71. Examining escape behavior and worm fitness on MYb71, we ruled out pathogenicity of MYb71 and consequently learned pathogen avoidance behavior as the main driver of the behavioral change toward MYb71. The change in behavior of C. elegans MY2079 toward microbiota bacterium MYb71 demonstrates how the microbiota influences the worm's choice. These results might give a baseline for future research on host-microbiota interaction in the C. elegans model.


Assuntos
Microbiota , Ochrobactrum , Animais , Bactérias , Caenorhabditis elegans , Virulência
10.
J Exp Biol ; 223(Pt 9)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32253289

RESUMO

Larval stages of members of the Abulacraria superphylum including echinoderms and hemichordates have highly alkaline midguts. To date, the reason for the evolution of such extreme pH conditions in the gut of these organisms remains unknown. Here, we test the hypothesis that, analogous to the acidic stomachs of vertebrates, these alkaline conditions may represent a first defensive barrier to protect from environmental pathogens. pH-optimum curves for five different species of marine bacteria demonstrated a rapid decrease in proliferation rates by 50-60% between pH 8.5 and 9.5. Using the marine bacterium Vibrio diazotrophicus, which elicits a coordinated immune response in the larvae of the sea urchin Strongylocentrotus purpuratus, we studied the physiological responses of the midgut pH regulatory machinery to this pathogen. Gastroscopic microelectrode measurements demonstrate a stimulation of midgut alkalization upon infection with V. diazotrophicus accompanied by an upregulation of acid-base transporter transcripts of the midgut. Pharmacological inhibition of midgut alkalization resulted in an increased mortality rate of larvae during Vibrio infection. Reductions in seawater pH resembling ocean acidification conditions lead to moderate reductions in midgut alkalization. However, these reductions in midgut pH do not affect the immune response or resilience of sea urchin larvae to a Vibrio infection under ocean acidification conditions. Our study addressed the evolutionary benefits of the alkaline midgut of Ambulacraria larval stages. The data indicate that alkaline conditions in the gut may serve as a first defensive barrier against environmental pathogens and that this mechanism can compensate for changes in seawater pH.


Assuntos
Ouriços-do-Mar , Água do Mar , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Larva , Vibrio
11.
Biochim Biophys Acta Biomembr ; 1862(8): 183273, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32171739

RESUMO

Antimicrobial peptides (AMPs) play an important role in the host defense against various microbes. One of the most efficient human AMPs is the human beta defensin-3 (hBD-3) which is produced by, e.g. keratinocytes and lung epithelial cells. However, the structure-function relationship for AMPs and in particular for defensins with their typical three disulfide bonds is still poorly understood. In this study the importance of the three disulfide bonds for the activity of the AMPs is investigated with biological assays and with biophysical experiments utilizing different membrane reconstitution systems. The activities of natural hBD-3, hBD-3-c (cyclic variant with one disulfide bond), and hBD-3-l (linear variant without disulfide bonds) and fragments thereof were tested against specific Gram-negative bacteria. Furthermore, hemolytic and cytotoxic activities were analyzed as well as the potency to neutralize immune cell stimulation of lipopolysaccharide (LPS). Experiments using reconstituted lipid matrices composed of phospholipids or LPS purified from the respective Gram-negative bacteria, showed that the membrane activity of all three hBD-3 peptides is decisive for their capability to kill bacteria and to neutralize LPS. In most of the test systems the linear hBD-3-l showed the highest activity. It was also the only peptide significantly active against polymyxin B-resistant Proteus mirabilis R45. However, the stability of hBD-3 against protease activity decreases with decreasing number of disulfide bonds. This study demonstrates that the refining of AMP structures can generate more active compounds against certain strains.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Infecções Bacterianas/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , beta-Defensinas/química , Sequência de Aminoácidos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Bacterianas/microbiologia , Dissulfetos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/patogenicidade , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/microbiologia , Lipopolissacarídeos/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Polimixina B/efeitos adversos , Polimixina B/farmacologia , Domínios Proteicos/efeitos dos fármacos , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/patogenicidade , Relação Estrutura-Atividade , beta-Defensinas/farmacologia
12.
Dev Comp Immunol ; 107: 103645, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32061941

RESUMO

Dictyostelium discoideum is a free-living soil amoeba which feeds upon bacteria. To bind, ingest, and kill bacteria, D. discoideum uses molecular mechanisms analogous to those found in professional phagocytic cells of multicellular organisms. D. discoideum is equipped with a large arsenal of antimicrobial peptides and proteins including amoebapore-like peptides and lysozymes. This review describes the family of lysozymes in D. discoideum. We identified 22 genes potentially encoding four different types of lysozymes in the D. discoideum genome. Although most of these genes are also present in the genomes of other amoebal species, no other organism is as well-equipped with lysozyme genes as D. discoideum.


Assuntos
Dictyostelium/fisiologia , Muramidase/metabolismo , Fagócitos/imunologia , Animais , Bactérias , Canais Iônicos/genética , Canais Iônicos/metabolismo , Muramidase/genética , Filogenia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
13.
ISME J ; 14(1): 26-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31484996

RESUMO

The microbiota is generally assumed to have a substantial influence on the biology of multicellular organisms. The exact functional contributions of the microbes are often unclear and cannot be inferred easily from 16S rRNA genotyping, which is commonly used for taxonomic characterization of bacterial associates. In order to bridge this knowledge gap, we here analyzed the metabolic competences of the native microbiota of the model nematode Caenorhabditis elegans. We integrated whole-genome sequences of 77 bacterial microbiota members with metabolic modeling and experimental characterization of bacterial physiology. We found that, as a community, the microbiota can synthesize all essential nutrients for C. elegans. Both metabolic models and experimental analyses revealed that nutrient context can influence how bacteria interact within the microbiota. We identified key bacterial traits that are likely to influence the microbe's ability to colonize C. elegans (i.e., the ability of bacteria for pyruvate fermentation to acetoin) and affect nematode fitness (i.e., bacterial competence for hydroxyproline degradation). Considering that the microbiota is usually neglected in C. elegans research, the resource presented here will help our understanding of this nematode's biology in a more natural context. Our integrative approach moreover provides a novel, general framework to characterize microbiota-mediated functions.


Assuntos
Bactérias/metabolismo , Caenorhabditis elegans/microbiologia , Microbiota , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Caenorhabditis elegans/metabolismo , Redes e Vias Metabólicas/genética
14.
Front Microbiol ; 10: 1793, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440221

RESUMO

The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage of the nematode Caenorhabditis elegans as a tractable, experimental model system and assessed the inducible transcriptome response after colonization with members of its native microbiota. For this study, we focused on two isolates of the genus Ochrobactrum. These bacteria are known to be abundant in the nematode's microbiota and are capable of colonizing and persisting in the nematode gut, even under stressful conditions. The transcriptome response was assessed across development and three time points of adult life, using general and C. elegans-specific enrichment analyses to identify affected functions. Our assessment revealed an influence of the microbiota members on the nematode's dietary response, development, fertility, immunity, and energy metabolism. This response is mainly regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets among the differentially expressed genes. We compared our transcriptome results with a corresponding previously characterized proteome data set, highlighting a significant overlap in the differentially expressed genes, the affected functions, and ELT-2 target genes. Our analysis further identified a core set of 86 genes that consistently responded to the microbiota members across development and adult life, including several C-type lectin-like genes and genes known to be involved in energy metabolism or fertility. We additionally assessed the consequences of induced gene expression with the help of metabolic network model analysis, using a previously established metabolic network for C. elegans. This analysis complemented the enrichment analyses by revealing an influence of the Ochrobactrum isolates on C. elegans energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing microbiota isolates on C. elegans life history and thereby provide a framework for further analysis of microbiota-mediated host functions.

15.
Mol Immunol ; 107: 44-53, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30658247

RESUMO

Granulysin (GNLY) is a cationic antimicrobial, proinflammatory, and cytotoxic effector protein primarily expressed in human cytotoxic T and NK cells. Its two variants, the 15 kDa precursor and the mature 9 kDa protein processed by proteolysis, act on different microbes or infected and transformed target cells and utilize mechanistically different effector activities. In human peripheral blood lymphocytes of healthy individuals, both forms of GNLY are detected in TCR αß+ (CD4+ and CD8+) T cells, TCR γδ+ T cells, and CD3-CD56+ NK cells. In general, classical cytotoxic cells (i.e. CD8+ TCR αß+ T cells, TCR γδ+ T cells, and NK cells) contain effector proteins in higher abundance in more cells of the subset as compared to TCR αß+ CD4+ T cells. Imaging flow cytometry analyses demonstrate that the subcellular localization and internal pools of 9 kDa and 15 kDa GNLY are virtually non-overlapping. The 9 kDa form is enriched in dense granules that also contain granzymes (Grz) and carry CD107a, whereas 15 kDa GNLY is associated with CD107a-negative lysosome-related effector vesicles. We further demonstrate that 15 kDa GNLY serves as an additional indicator for non-classical, PKC-dependent degranulation while the liberation of granules containing 9 kDa GNLY requires calcium mobilization. Our studies provide a deeper insight into the subcellular localization and release mechanisms of the individual GNLY species. This information will not only be useful for the interpretation of GNLY-related pathophysiologies, but also for the development of therapeutic interventions employing distinct GNLY effector functions for microbial targeting or immunoregulation.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Degranulação Celular , Vesículas Citoplasmáticas/metabolismo , Lisossomos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Proteína Ligante Fas/metabolismo , Humanos , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/metabolismo , Peso Molecular , Transporte Proteico
16.
Artigo em Inglês | MEDLINE | ID: mdl-29662839

RESUMO

Due to their archaic life style and microbivor behavior, amoebae may represent a source of antimicrobial peptides and proteins. The amoebic protozoon Dictyostelium discoideum has been a model organism in cell biology for decades and has recently also been used for research on host-pathogen interactions and the evolution of innate immunity. In the genome of D. discoideum, genes can be identified that potentially allow the synthesis of a variety of antimicrobial proteins. However, at the protein level only very few antimicrobial proteins have been characterized that may interact directly with bacteria and help in fighting infection of D. discoideum with potential pathogens. Here, we focus on a large group of gene products that structurally belong to the saposin-like protein (SAPLIP) family and which members we named provisionally Apls (amoebapore-like peptides) according to their similarity to a comprehensively studied antimicrobial and cytotoxic pore-forming protein of the protozoan parasite Entamoeba histolytica. We focused on AplD because it is the only Apl gene that is reported to be primarily transcribed further during the multicellular stages such as the mobile slug stage. Upon knock-out (KO) of the gene, aplD- slugs became highly vulnerable to virulent Klebsiella pneumoniae. AplD- slugs harbored bacterial clumps in their interior and were unable to slough off the pathogen in their slime sheath. Re-expression of AplD in aplD- slugs rescued the susceptibility toward K. pneumoniae. The purified recombinant protein rAplD formed pores in liposomes and was also capable of permeabilizing the membrane of live Bacillus megaterium. We propose that the multifarious Apl family of D. discoideum comprises antimicrobial effector polypeptides that are instrumental to interact with bacteria and their phospholipid membranes. The variety of its members would allow a complementary and synergistic action against a variety of microbes, which the amoeba encounters in its environment.


Assuntos
Infecções Bacterianas/imunologia , Dictyostelium/imunologia , Dictyostelium/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Saposinas/metabolismo , Saposinas/farmacologia , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Bacillus megaterium/efeitos dos fármacos , Dictyostelium/genética , Dictyostelium/metabolismo , Gastrópodes/imunologia , Gastrópodes/metabolismo , Gastrópodes/microbiologia , Perfilação da Expressão Gênica , Canais Iônicos/metabolismo , Canais Iônicos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Lipossomos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/farmacologia , Proteínas Recombinantes , Saposinas/genética , Saposinas/imunologia
17.
Proteomics ; 18(8): e1700426, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29513928

RESUMO

The nematode Caenorhabditis elegans interacts with a variety of bacteria as it feeds on microbes, and a number of these both associate and persist within the worm's intestine. Host-microbe interactions in C. elegans have been analyzed primarily at the transcriptome level with the host response often been monitored after challenge with pathogens. We assessed the proteome of C. elegans after growth on bacteria capable of colonizing its gut, via a comparative analysis of the nematode exposed to two naturally associated Ochrobactrum spp. (MYb71, MYb237) versus C. elegans grown on Escherichia coli OP50. A total of 4677 C. elegans proteins were identified, 3941 quantified. Significant alterations in protein abundances were observed for 122 proteins, 48 higher and 74 lower in abundance. We observed an increase in abundance of proteins potentially regulated via host signaling pathways, in addition to proteins involved in processing of foreign entities (e.g., lipase, proteases, glutathione metabolism). Decreased in abundance were proteins involved in both degradation and biosynthesis of amino acids, and enzymes associated with the degradation of peptidoglycan (lysozymes). The protein level differences between C. elegans grown on native microbiome members compared to the laboratory food bacterium may help to identify molecular processes involved in host-microbe interactions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Escherichia coli/fisiologia , Infecções por Bactérias Gram-Negativas/veterinária , Interações Hospedeiro-Patógeno , Microbiota , Ochrobactrum/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo , Proteômica , Transdução de Sinais , Espectrometria de Massas em Tandem
18.
Anal Bioanal Chem ; 410(19): 4737-4748, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29470663

RESUMO

The identification and quantification of molecules involved in bacterial communication are major prerequisites for the understanding of interspecies interactions at the molecular level. We developed a procedure allowing the determination of 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) and the virulence factor pyocyanin (PYO) formed by the Gram-negative bacterium Pseudomonas aeruginosa. The method is based on dispersive liquid-liquid microextraction from small supernatant volumes (below 10 µL) followed by quantitative matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The use of ionic liquid matrix led to a lowered limit of detection for pyocyanin and, due to suppression of matrix background signals, easy to interpret mass spectra compared to crystalline matrices. Using an isotope-labeled pyocyanin standard synthesized in small-scale synthesis, quantitative analysis spanning approximately one order of magnitude (0.5 to 250 fmol) was feasible. The method was successfully applied to the detection of the signaling molecules PQS and HHQ in cultures of P. aeruginosa strains isolated from sputum of cystic fibrosis patients and allowed a highly sensitive quantification of PYO from these cultures. Hence, the developed method bears the potential to be used for screening purposes in clinical settings and will help to decipher the molecular basis of bacterial communication. Graphical abstract Ionic liquid matrices for the detection and quantification of the toxin pyocyanin and other signaling molecules from P. aeruginosa by MALDI MS.


Assuntos
4-Quinolonas/análise , Líquidos Iônicos/química , Microextração em Fase Líquida/métodos , Pseudomonas aeruginosa/química , Piocianina/análise , Quinolonas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fibrose Cística/microbiologia , Humanos , Marcação por Isótopo/métodos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Fatores de Virulência/análise
19.
J Am Soc Mass Spectrom ; 28(12): 2538-2547, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28856620

RESUMO

N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. Graphical abstract ᅟ.


Assuntos
Acil-Butirolactonas/análise , Pseudomonas aeruginosa/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acil-Butirolactonas/síntese química , Acil-Butirolactonas/metabolismo , Técnicas de Química Sintética , Humanos , Líquidos Iônicos/química , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Espectrometria de Massas em Tandem/métodos
20.
PLoS One ; 12(5): e0176207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472161

RESUMO

The human pathogenic amoeba Acanthamoeba castellanii (A. castellanii) causes severe diseases, including acanthamoeba keratitis and encephalitis. Pathogenicity arises from the killing of target-cells by an extracellular killing mechanism, where the crucial first step is the formation of a close contact between A. castellanii and the target-cell. This process is mediated by the glycocalix of the target-cell and mannose has been identified as key mediator. The aim of the present study was to carry out a detailed biophysical investigation of mannose-mediated adhesion of A. castellanii using force spectroscopy on single trophozoites. In detail, we studied the interaction of a mannose-coated cantilever with an A. castellanii trophozoite, as mannose is the decisive part of the cellular glycocalix in mediating pathogenicity. We observed a clear increase of the force to initiate cantilever detachment from the trophozoite with increasing contact time. This increase is also associated with an increase in the work of detachment. Furthermore, we also analyzed single rupture events during the detachment process and found that single rupture processes are associated with membrane tether formation, suggesting that the cytoskeleton is not involved in mannose binding events during the first few seconds of contact. Our study provides an experimental and conceptual basis for measuring interactions between pathogens and target-cells at different levels of complexity and as a function of interaction time, thus leading to new insights into the biophysical mechanisms of parasite pathogenicity.


Assuntos
Acanthamoeba/metabolismo , Aderência Bacteriana , Manose/metabolismo , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...